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Abstract
The Comité international des poids et mesures (CIPM) has projected a major revision of the
International System of Units (SI) in which all of the base units will be defined by fixing the
values of fundamental constants of nature. In preparation for this we have carried out a new,
low-uncertainty determination of the Boltzmann constant, kB, in terms of which the SI unit of
temperature, the kelvin, can be re-defined. We have evaluated kB from exceptionally accurate
measurements of the speed of sound in argon gas which can be related directly to the mean
molecular kinetic energy, 3

2kBT . Our new estimate is kB = 1.380 651 56 (98) × 10−23 J K−1

with a relative standard uncertainty uR = 0.71 × 10−6.

S Online supplementary data available from stacks.iop.org/Met/50/354/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Introduction

1.1.1. Background. The current definition of the kelvin
[1, 2] (the fraction 1/273.16 of the temperature of the triple-
point of water) has proved adequate for more than 50 years.
However, the nature of temperature as an intensive quantity
leads to difficulties in ‘scaling’ the unit to higher and lower
temperatures. In this sense the definition itself limits the
accuracy achievable at temperatures that differ significantly
from the temperature of the triple-point of water (TTPW).

The CIPM now proposes [3] to introduce a new definition
of the kelvin, which will simply state that the kelvin has a value
consistent with a defined value of the Boltzmann constant, kB.
This links the value of the unit of temperature, the kelvin, to the
value of the unit of energy, the joule (1 J = 1 kg m2 s−2) and is
independent of any particular temperature. In this conception,
the Boltzmann constant would be fixed with no associated
measurement uncertainty. In order to make the transition from
one unit definition to another as seamless as possible it is

desirable to have a low-uncertainty estimate of the value of
kB in the current unit definition.

1.1.2. Overview of the acoustic resonance technique. Many
techniques can be used to estimate kB, but a recent review
[4] concluded that acoustic techniques were likely to achieve
the lowest uncertainty. One reason for this is the strikingly
simple relationship between the limiting low-pressure speed
of sound c0 in a monatomic gas and the root-mean-squared
speed of the molecules, vRMS: c0 = √

5/9vRMS. In terms
of macroscopically measurable parameters this becomes c0 =√

γ0RT/M where γ0 is the ratio of the principal heat capacities
of the gas in the limit of low pressure, T is the thermodynamic
temperature and M is the molar mass of the gas. The molar gas
constant R is defined by R = NAkB where NA is the Avogadro
constant. Rearranging for kB we find

kB = Mc2
0

γ0T NA
. (1)

Since γ0 = 5/3 exactly for monatomic gases, and NA is known
with a relative standard uncertainty uR = 0.044 × 10−6 [5]

0026-1394/13/040354+23$33.00 © 2013 BIPM & IOP Publishing Ltd Printed in the UK & the USA 354

http://dx.doi.org/10.1088/0026-1394/50/4/354
mailto: michael.depodesta@npl.co.uk
http://stacks.iop.org/Met/50/354
http://stacks.iop.org/Met/50/354/mmedia


A low-uncertainty measurement of the Boltzmann constant

Figure 1. Conceptual illustration of the operation of a combined
acoustic and microwave resonator. Microwaves: the radius of the
resonator is estimated from microwave measurements of up to eight
TM1n resonance triplets. The frequencies must be corrected for the
dielectric properties of argon gas. The uncertainty associated with
this correction becomes smaller at low pressure. The radius at zero
pressure is used in the estimate of the limiting low-pressure speed of
sound. Acoustics: The speed of sound is deduced from the
frequencies of several radial acoustic resonances and kB is deduced
from the zero-pressure limit. In order to obtain this, several
pressure-dependent frequency corrections must be applied.

experimentally, the challenge is to measure M , T and c2
0 with

low uncertainty. Importantly, and in contrast with PVT gas
thermometry techniques, the speed of sound is only weakly
dependent upon pressure. There is thus no need to determine
the pressure with the same or lower fractional uncertainty than
is required for our estimate of kB.

Low uncertainty in M requires meticulous gas-handling,
and quantification of isotopic variations and chemical
impurities, which can also affect γ . Low uncertainty in
T is achieved by carrying out the experiment close to
the temperature of the triple-point of water, TTPW. The
entire experiment can be viewed as a primary measurement
of the product kBTTPW, but because TTPW is currently defined
to be 273.16 K exactly, measuring the product allows an
estimate of kB.

Low uncertainty in c2
0 is achieved by measurements in a

combined acoustic and microwave resonator (figure 1). The
microwave resonances allow estimates of the dimensions of
the resonator as a function of temperature and pressure, which
may then be combined with measurements of the frequencies

of acoustic resonances to yield an experimental estimate for
the speed of sound, cExp.

We then deduce the limiting low-pressure speed of sound
c0 by extrapolating c2

Exp(P ) to the limit of P = 0. However,
before this is done, both microwave and acoustic resonant
frequencies must be corrected for pressure-dependent effects.
The acoustic corrections arise mainly at low pressure from
the thermal boundary layer (TBL) between the gas and the
resonator wall. The microwave corrections are proportional to
pressure and arise from the change in the speed of light due to
the polarizability of argon.

We examine only the (0, n) acoustic resonances which
have a purely radial variation in sound pressure level. We
choose these modes because they do not suffer from viscous
losses at the boundary with the resonator wall, and thus they
have a higher Q-factor than most acoustic modes. Additionally
they have a particularly simple interaction with the mechanical
vibrational modes of the resonator shell [6] and are relatively
unaffected by smooth deviations from sphericity. In our
analysis we seek a single value of c2

0 to describe all the acoustic
data from six resonances, each of which has several corrections
which must be made without any adjustable parameters.
The extent to which the data are truly self-consistent from
mode to mode provides a strong check on several underlying
assumptions, making it possible to detect a range of potential
systematic errors.

A perfectly spherical resonator is acoustically simple,
but unsuitable for simultaneous use as a microwave resonator
because no singlet microwave resonances exist. The lowest
degeneracy of microwave modes is three, and even tiny
manufacturing imperfections and the joint between the two
hemispheres will partially split these triplet resonances,
distorting the line-shape and introducing uncertainty into the
estimation of the mean frequency. It is the mean frequency
of the triplet microwave resonances which is related to the
radius [7]. The radius estimated by the microwave technique
is known as the equivalent radius aeq, defined as the radius
of a perfect sphere with the same volume as the experimental
quasisphere, aeq = 3

√
3V/4π .

Introducing a triaxial shape modification allows the triplet
components to be individually resolved [7] and improves
the precision with which the mean frequency, and hence the
resonator dimensions, may be determined. Because of the high
electrical conductivity of copper the microwave resonances
are narrow, allowing the triplet components to be individually
resolved with only a small deviation from sphericity (±0.05%).
This shape perturbation produces a small, but calculable shift
of the acoustic resonances [8–10].

1.2. Experimental details

1.2.1. Measurements. Our estimate of kB is deduced from
three sets of isothermal measurements of cExp(P ) carried out
close to TTPW. We refer to these as Isotherms 3, 4 and 5.
Isotherms 1 and 2 were used for establishing the operation
of the cryostat and resonator, and Isotherms 6 and beyond are
being used to estimate differences between the thermodynamic
temperature and the temperature estimated according to the
International Temperature Scale of 1990, T90.
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M de Podesta et al

(a) (b)

Figure 2. (a) Cross-section through the apparatus showing the NPL–Cranfield resonator NPLC-2 suspended within an isothermal enclosure
within an outer 25 L pressure vessel. The pressure vessel was immersed in a stirred liquid bath at a temperature of approximately −0.2 ◦C.
Also visible are some of the PRTs positioned in the neck, the equator and the south pole. In use, the argon gas flows into the resonator at a
rate of 7.4 × 10−7 mol s−1 (1 sccm) and then passes into the surrounding isothermal volume where the pressure is measured. The internal
pressure is close to the external pressure, with the small difference being determined from microwave measurements of the dielectric
constant of the argon gas. (b) Cut-away view of the resonator sphere showing the showing the coordinate system. Notice the –y-axis is
shown. The outer cylindrical surface was cut at the same time as the inner surface so that when the hemispheres are assembled, good
alignment between the two outer cylindrical surfaces ensures good alignment of the inner surfaces.

1.2.2. Resonator. Our speed of sound measurements were
carried out inside the NPL–Cranfield resonator NPLC-2 [11]
(figure 2). This is constructed from two copper hemispheres
whose internal surfaces were cut so that, when assembled, they
create a triaxially ellipsoidal inner surface defined by

x2

a2
+

y2

a2 (1 + ε1)
2 +

z2

a2 (1 + ε2)
2 = 1 (2)

with a = 62.0 mm, ε1 = 0.0005 and ε2 = 0.001. This
produces a resonator with volume of approximately 1 L which
we considered large enough to make surface perturbations
relatively small while minimizing temperature gradients that
might occur across a larger resonator.

Each hemisphere has four blank plugs, which initially
protruded beyond the inner surface, but during manufacture
these were machined back to make a nearly perfect match
with the surrounding quasispherical surface. Probing using a
coordinate measuring machine showed that the entire surface
of each quasihemisphere was within 1.5 µm of its design form
[11]. Our low uncertainty of measurement is largely due
to the near-perfect shape and surface condition achieved by
fabrication using ultra-precision diamond-turning techniques
[12]. After machining, the plugs were removed and modified
(figure 3, table 1) to accept microwave antennas, acoustic
transducers and gas inlet and outlet tubes.

In operation the resonator was suspended from the lid
of a copper container designed to create a nearly isothermal
environment. The copper container—which had holes to allow
gas to enter and leave—was suspended inside a stainless-steel
pressure vessel, and the pressure vessel was immersed in a
temperature-controlled bath at approximately –0.2 ◦C.

(a) (b) (c) (d)

Figure 3. Designs of the four types of plugs. (a) A blank plug.
(b) Gas inlet and outlet ducts. (c) Microwave antenna with the
central conductor adjusted to be flush with the spherical surface, and
the surrounding volume filled with epoxy resin. (d) Acoustic
transducer, in this case the microphone, including the pre-amplifier.

1.2.3. Acoustics. Plugs 5 and 6 were removed and replaced
with plugs modified to accept Gras type 40DP acoustic
transducers with a diameter of 3.2 mm. The inner faces of
the plugs were carefully ground to match the curvature of
the plugs they replaced as closely as possible. Microwave
measurements were made before and after the replacement to
assess the perturbation to the inner surface of the resonator
(section 2.3.1).

One transducer was used as a sound source by using a
transmitter adapter (Gras RA0086). It was polarized to 130 V
and driven by a Krohn-Hite 7602 M amplifier with a sinusoidal
waveform from an SRS DS345 oscillator with its time-base
linked to a 10 MHz rubidium clock (SRS SIM 940). The clock
was periodically checked against a 10 MHz signal derived from
NPL’s primary frequency standard and never found to differ by
more than one part in 1011. The same clock was also used to

356 Metrologia, 50 (2013) 354–376
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Table 1. Summary of plugs in NPLC-2. Angles θ and φ refer to the
equivalent angles in figure 2.

Plug Function θ ϕ Notes

Northern hemisphere
1 Microwave in 45◦ 45◦ In between x-, −y

and z-axes
2 Gas out 45◦ −45◦

3 Gas in 45◦ 135◦

4 Blank 45◦ 90◦

Southern hemisphere
5 Acoustics in 180◦ 0 ‘South pole’
6 Acoustics out 140.8◦ 45◦ Position chosen

to minimize
interference between
the (0,2) and (3,1)
resonances

7 Blank 135◦ −90◦

8 Microwave 135◦ −45◦ In between x,
out −y and −z axes

drive the time-base on the Agilent N5230A PNA-L Network
Analyser used for microwave measurements.

By linking the other transducer directly to an amplifier
(Gras 26AC) we reduced stray capacitance and improved
signal-to-noise performance. However, despite lowering
the supply voltage, the amplifier dissipated ∼1.7 mW
continuously—a significant amount of heat to dissipate close to
the resonator. The effect of the power dissipation is discussed
in section 2.2.

1.2.4. Gas inlet and outlet. The inlet duct fitted into plug
3 was constructed out of 0.634 mm diameter tube 124 mm
long connected to a 0.900 mm diameter tube 4 m long. This
was thermally attached to the copper lid of the isothermal
shield in order to temperature-condition the incoming gas.
The outlet duct fitted into plug 2 was constructed out of
0.522 mm diameter pipe 62 mm long and led directly to the
isothermal enclosure which was at the same pressure as the
enclosing pressure vessel. At 100 kPa and a flow rate of
7.4 × 10−7 mol s−1 (1 standard cubic centimetre per minute
(sccm)) the flow speed of gas entering the resonator was
approximately 50 mm s−1 and the nominal residence time in
the resonator was approximately 17 h. In the same conditions
the flow speed of gas in the outlet duct was approximately
78 mm s−1, which we calculated was sufficient to prevent
significant back-diffusion of impurities from the outer pressure
chamber.

1.2.5. Pressure and flow measurement and control. The
pressure of the gas within the resonator was controlled by
measuring the pressure in the vessel containing the resonator
with a GE Druck DPI 150 pressure indicator. The measured
pressure was compared with a set pressure and the results
fed back to a mass-flow controller (MFC1) at the inlet of
the gas-handling system. Typically pressure fluctuations had
a standard deviation of 0.6 Pa at all pressures. Before the
measurements described in this work, we detected that the
DPI 150 calibration was drifting by several tens of pascal
each day. For subsequent isotherms we used a Ruska

7000 as an additional pressure indicator, and zeroed the
device before and after each data acquisition run. The
Ruska 7000 was calibrated at NPL before and after this
work and the table of corrections was unchanged within the
measurement uncertainty of approximately 30 parts in 106,
i.e. 3 Pa at 100 kPa.

The flow rate through the resonator was set by a second
mass-flow controller (MFC2) at the outlet of the pressure
chamber. The combination of the two MFCs allowed stable
pressures and flows to be established. In order to ensure good
flow control at low flow rates, while allowing the pressure
to be changed quickly, MFC1 and MFC2 were each parallel
combinations of two MFCs: a low flow (0–10 sccm) and a high
flow (0–500 sccm) device. We used a flow rate of 1 sccm for
all measurements, and the effect of this flow on the resonant
frequencies is discussed in section 2.4.2.

The pressure within the resonator was inferred by
accounting for the differences in height and temperature
between the Ruska 7000 and the centre of the resonator, and
then additionally for the pressure drop as gas flowed through
the outlet duct. The impedance of the outlet was measured by
holding the pressure in the outer vessel constant, and measuring
the change in the dielectric constant of the gas within the
resonator as the flow was varied. The inferred pressure within
the resonator was checked by dielectric constant measurements
(section 2.3.2) and found to be consistent with the Ruska 7000
within approximately 10 Pa at all pressures.

1.2.6. Temperature control. Temperature control was
achieved using feedback from one of two type 5187L Tinsley
capsule standard platinum resistance thermometers (cSPRT)
installed on the neck supporting the resonator. The cSPRT
was read by a Tinsley Senator bridge and the bridge output
was used as the feedback signal for a PTC10 temperature-
controller. The resonator was heated indirectly by a silicone
heater pad attached to the outside of the isothermal enclosure.
The remaining cSPRT on the neck and the four cSPRTs on
the equator and the south pole were read by an ASL F18
bridge and used to deduce the resonator temperature. The
results are described in section 2.2 along with an evaluation of
measurement uncertainty.

1.2.7. Data acquisition. At each pressure we measured
the (0, 2) to (0, 9) resonances and extracted estimates of
the resonant frequency f(0,n) and half-width g(0,n), taking
40 data points in the range ±3g(0,n), around the peak of
each resonance, first with increasing frequency and then with
decreasing frequency. The rising and falling data for each
frequency were averaged and fitted to a complex Lorenztian
function with a linear background:

�V (f ) = if �A
f 2 − (

f(0,n) + ig(0,n)

)2 + �B + �C (
f − f(0,n)

)
(3)

where the vector symbol indicates that a quantity has both in-
phase and out-of phase components. From this analysis f(0,n)

and g(0,n) can be deduced.
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Figure 4. (a) Magnitude of the TBL correction to cExp(P ) (left-hand axis) and c2
Exp(P ) (right-hand axis) for the (0, 2) to (0, 9) resonances

for a spherical resonator of volume 1 L. Note that the pressure axis is logarithmic. (b) The uncertainty in the pressure measurement (in
pascal) required for 0.1 parts in 106 concomitant uncertainty in c2

Exp(P ). The uncertainty in c2
0 arising from the estimation of the TBL is

discussed in section 2.4.4. Note that both axes are logarithmic.

Additionally each data set was also fitted by a
similar function with an additional quadratic term and a
comparison made between the fitted results and their associated
uncertainties. The linear background fit had the lowest
uncertainties for all modes at all pressures with the exception
of the (0, 7) and (0, 9) resonances at lower pressures. These
modes are affected by broadening of neighbouring non-radial
modes, and so for the (0, 7) and (0, 9) modes, the quadratic
background fit was used at low pressure.

1.2.8. Corrections to f(0,n). The experimentally determined
acoustic resonant frequencies f(0,n) require several corrections
�f(0,n) before they can be used to make an experimental
estimate of the speed of sound, cExp, using

cExp = 2πaeq
[
f(0,n) +

∑
i �f(0,n)

]
ξ(0,n)

(4)

where ξ(0,n) is the appropriate eigenvalue [8, 9], and aeq is the
so-called equivalent radius discussed in section 1.2.9.

The corrections �f(0,n) take account of the perturbing
effect of: the ducts bringing gas into and out of the resonator,
the acoustic transducers, bulk dissipation in the gas, the effect
of the shape deformation, and differences in temperature away
from TTPW. These corrections differ from mode to mode,
but are small, typically a few parts in 106, and have been
extensively discussed in the literature [7, 11, 13–16].

However the correction arising from the TBL between
the gas and the walls of the resonator is large. It increases
as the pressure falls as 1/

√
P and for our resonator at one

atmosphere amounts to approximately 214 parts in 106 for the
(0, 2) resonance (figure 4(a)).

Since kB is inferred from c2
Exp(P ) it is doubly sensitive

to this correction and in order to evaluate it correctly it
is important to measure the pressure with low uncertainty.
Figure 4(b) shows the pressure uncertainty required to correct
the frequencies of the (0, 2) to (0, 9) resonances with a relative

standard uncertainty of uR = 0.05 × 10−6, which at low
pressure would add an additional relative standard uncertainty
of uR = 0.1 × 10−6 on estimates of c2

Exp(P ) used to estimate
kB. Pressure errors on the order of 100 Pa such as have been
reported in the literature [14, 15] can lead to distortion of
c2

Exp(P ) and cause significant errors in the inference of c2
0.

1.2.9. Equivalent radius. In order to convert measurements
of the frequencies of acoustic resonances into estimates
of the speed of sound, the ‘equivalent’ radius aeq of the
resonator must be determined (equation (4)). The equivalent
radius corresponds to the radius of the perfect sphere with
the same volume as our experimental ‘quasisphere’ (aeq =
3
√

3V/4π) and differs by only a few nanometres from the
average radius. In this experiment aeq is deduced from a
set of microwave resonances acquired at the same time as
the acoustic resonances. Our estimate is the culmination of
research executed over several years, both at NPL and at other
laboratories world-wide, and is supported by four key results.

The first result is the solution of the electromagnetic
modes in a triaxial ellipsoid. The first-order solution was
calculated by Mehl [7], who also conjectured a second-order
solution [17] which was later confirmed by the numerical
method of Edwards and Underwood [18]. Collectively these
works provide a sound theoretical basis for the inference of
aeq from microwave data such as those shown in figure 5.
In this work we infer aeq from four distinct microwave
resonances (section 2.3), and the level of agreement between
these estimates is typically on the order of a few nanometres,
less than a part in 107 of the resonator radius.

The second result is the experimental confirmation of the
microwave measurement by comparison with other techniques.
In preparation for measurement of the Boltzmann constant, we
checked the microwave radius measurement by comparison
with other techniques. To achieve this we measured aeq for
a second resonator NPLC-1 (nominally identical to NPLC-2)
with a coordinate measuring machine [11], with microwave
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Figure 5. The TM11 microwave resonance showing the triplet
structure caused by the triaxial shape. The blue circles are data
points and the red curve is a fit.

spectroscopy and using pyknometry with water [19]. The
experiments revealed no evidence of any systematic deviation
with comparison uncertainties of 187 nm (3 parts in 106)
and 37 nm (0.6 parts in 106), respectively. This agreement
is remarkable because the pyknometry estimate is traceable
to SI base units through mass and density standards rather
than time and dimensional standards. The pyknometric
determination required coating NPLC-1 with benzotriazole
[20] to prevent corrosion by the water, a step which introduced
additional uncertainties and so this was not undertaken for
NPLC-2. These intercomparisons support our understanding
that the microwave technique is not subject to any unidentified
systematic biases other than those identified from the internal
consistency of the microwave data themselves.

The third is the estimation of the perturbation to the
measured microwave resonance frequencies when the surface
of the triaxial ellipsoid is altered, for example by the insertion
of acoustic transducers and microwave probes. In section 2.3.1
we describe the effect of introducing acoustic transducers into
the resonator and of modifying the microwave antennas, and
show that these are in agreement with expectations.

The final result is an evaluation of the dielectric corrections
caused by the presence of argon. An assessment of these
corrections provides an important check on our estimate of the
gas pressure within the acoustic resonator [21] (section 2.3.2).

We limited our microwave analysis to the TM1n triply-
degenerate microwave resonances, because we were able to
calculate the antenna perturbations from first principles using
a combination of electromagnetic analysis and finite-element
modelling [22]. The disadvantage of this choice is that TM
modes are more strongly perturbed by possible dielectric layers
on the surface of the resonator. Nonetheless, the compromise
yielded acceptable results.

1.2.10. Choice of gas. In principle any pure gas could
be used, but for the lowest uncertainty a monatomic gas is
necessary, and if the gas is to be flowed through the resonator,
the cost of the gas limits the choice to either argon or helium.
The advantages of using helium are that it is nearly mono-
isotopic, and its thermal conductivity—on which estimates of
the TBL depend—can be more accurately calculated [23].

Nonetheless we chose to use argon because its density
is more similar to that of air in which acoustic transducers
have been designed to operate. This significantly improves

the signal-to-noise ratio at a given pressure. Additionally the
TBL correction is smaller, the effect of common impurities is
less, and the gas is compatible with the quartz Bourdon gauge
in our Ruska Model 7000 pressure indicator that we used for
traceable pressure measurements.

1.2.11. Previous work. Our approach builds on techniques
developed in our previous work [15, 16] and the two previous
lowest uncertainty estimates of kB. The seminal 1988 work by
Moldover et al [13] (uR(kB) = 1.8×10−6) used a 3 L stainless-
steel spherical resonator and employed two sophisticated
techniques for reducing the uncertainty in estimates of M

and aeq. They determined M by measuring the difference in
speed of sound between their working gas and a sample of
nearly mono-isotopic 40Ar. To determine aeq they carried out
an audacious pyknometry experiment that involved cooling
the resonator to TTPW, filling it with mercury of uniquely
characterized density, and then measuring the mass of mercury
that just filled the resonator. The LNE 2011 work by Pitre
et al [14] (uR(kB) = 1.24 × 10−6) used a 0.5 L copper quasi-
spherical resonator. They determined M by a gravimetrically
traceable isotope-ratio mass spectrometry measurement [24]
and estimated aeq using simultaneous microwave resonance
spectrometry [7, 25].

2. Results

2.1. Molar mass

2.1.1. Introduction. Our estimate of the molar mass of the
argon gas used in this work is based on measurements of
its isotopic and chemical composition. We discuss first the
isotopic analysis which dominates our uncertainty and then
in turn the effect of chemical impurities considered in three
categories: noble gas impurities, non-noble gas impurities and
water. We then discuss our observations on the variability of
the isotopic composition of argon.

2.1.2. Isotopic analysis. The isotopic measurements
were made using the ARGUS mass spectrometer [26] at
the Scottish Universities Environmental Research Centre
(SUERC). Alongside samples from the argon cylinders used
in our experiments, measurements were also made on argon
derived from local air [27]. Argon isotope ratios in atmospheric
air have been shown to be consistent using samples taken from
around the Earth [28] and so the gravimetrically determined
values of the atmospheric ratios may be used to correct the
ARGUS results.

We used one cylinder of gas for Isotherms 3 and 4, and
a second cylinder for Isotherm 5. Gas sampled from these
cylinders was fractionally heavier than the argon derived from
local air by 0.40(17) and 0.41(17) parts in 106 with a mean
value of 39.947 816 g mol−1 (table 2).

Mass spectrometers are not equally sensitive to all
isotopes, and so our results are referenced to the values of
the argon isotope ratios in air recommended by Lee et al
[28] who compared argon derived from atmospheric air with
gravimetrically specified isotopic mixtures. The molar mass
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Table 2. Summary of isotopic analysis and molar mass of argon used in this work. Uncertainties are shown in brackets below the main
entry. The upper part of the table shows the gravimetrically calibrated results for argon isotope ratios in air. The lower part of the table
shows results for isotope ratios in the argon samples used in this work (Isotherms 3, 4 and 5).The final entry is for the gas used in Isotherms
6 and 7 which has not contributed to our kB estimate. The isotopic result shows that the molar mass of this gas is heavier by
1.97(24) µmol mol−1 than the average of the gas used in Isotherms 3, 4 and 5. See figure 7, section 2.1.6 for more details.

Fractional shift
Molar mass/ in molar mass from Lee/

Sample R

( 40Ar
36Ar

)
R

( 40Ar
38Ar

)
g mol−1 µmol mol−1

Standard measurements for air
Lee et al [28] 298.56 1583.87 39.947 7996

(0.31) (3.01) (0.000 014 0)
This work
Isotherms 3 and 4 298.90 1586.52 39.947 8155 +0.40

(0.24) (2.36) (0.000 006 75) (0.17)
Isotherm 5 298.93 1585.73 39.947 8161 +0.41

(0.24) (3.47) (0.000 006 75) (0.17)
Average of 298.91 1586.12 39.947 8158 +0.41

Isotherms 3, 4 and 5
Additional measurement
Isotherms 6 and 7 300.45 1600.35 39.947 8948 +2.38

(0.15) (2.62) (0.000 006 79) (0.17)

of a sample of pure argon consisting only of 36Ar, 38Ar and
40Ar isotopes can be determined entirely from the known
masses of the argon isotopes and the two ratios of the isotopic
concentrations R(36Ar : 40Ar) and R(38Ar : 40Ar). Based on the
uncertainties in the ratios in [28] the concomitant uncertainty
in the molar mass of atmospheric argon is uR = 0.351×10−6.
Combining this with a type A estimate of the ARGUS mass
spectrometer uncertainty uR = 0.169 × 10−6 yields the
isotopic contribution to the relative standard uncertainty of
uR = 0.390 × 10−6. This is significantly lower than the
uncertainty in the molar mass quoted in [28] (uR = 5 × 10−6)

because the uncertainty quoted in [28] has been incorrectly
calculated. Their estimate is based on the quadrature sum
of the uncertainties in the three isotopic abundances, which
implicitly assumes that the isotopic abundances can vary fully
independently. In fact in pure argon, there are only two
independent measurands. Thus if the abundances of 36Ar and
38Ar are specified, the abundance of 40Ar—which constitutes
the balance of the argon—is fully determined.

2.1.3. Noble gas impurities. Because the source of the argon
gas is atmospheric air, the presence of other noble gases as
impurities is a possibility. We tested for this using an Agilent
7890A Gas Chromatograph (GC) equipped with an Agilent
5975C Mass Spectrometer Detector (MSD). The separation of
the gas components was made on a 50 m × 0.53 mm PLOT
MS 5 A capillary column, using helium as the carrier gas.
Using atmospheric air as a calibration standard, we established
that the amount fractions of Kr and Xe present were below
10 nmol mol−1. For neon we used a gravimetrically spiked
sample of 987 nmol mol−1 neon in argon (figure 6) to show
that levels of neon in argon must be below 30 nmol mol−1. The
GC-MSD used helium as a flow gas and so we could not detect
helium explicitly. However, given these results for the noble
gases both heavier and lighter than argon, and given the relative
concentrations of the noble gases found in the atmosphere—the

source of the argon gas—we expect a limit of 10 nmol mol−1

limit to apply for helium (table 3).
The largest effect on our estimate of M would be if both

krypton and xenon were present at the limits of detection,
which would shift our estimate by −0.034 parts in 106. If we
consider this to establish a range of possible values of ±0.034
parts in 106 about our mean estimate then we can associate this
with a standard uncertainty of uR = 0.034/

√
3 = 0.020.

2.1.4. Non-noble gas impurities. We ensured the purity of the
gas by using high-purity argon gas, then filtering the gas and
using getters to remove impurities. Air Products BIP grade
argon has the impurity level specified in table 4. After use,
each bottle used was returned to Air Products laboratories
and confirmed to be within specification. After leaving the
cylinder, the gas reached the resonator via all-metal regulators,
mass flow controllers, stainless steel pipes and valves, all
of which were baked, mostly at 140 ◦C. Before entering the
resonator the gas passed through two point-of-use purifiers
(SAES GC50 heated getters). Together these devices can
be expected to remove all non-noble gases to levels below
10 nmol mol−1. Monte Carlo simulation of the effect of a
range of impurities at this level introduces a relative standard
uncertainty to the molar mass of uR = 0.002 × 10−6. The
relative standard uncertainty in M/γ is the same when rounded
to three decimal places.

2.1.5. Water. Because of its ubiquitous presence in gas-
handling systems we consider water separately. After finding
unexpected amounts of water in a previous experiment [29], we
installed a custom-designed bakeable trace-moisture sensor.
During Isotherm 3 this indicated levels of moisture below
100 nmol mol−1 at all pressures, and for Isotherms 4 and 5
the amount fraction of water was below 10 nmol mol−1 at all
pressures. In the worst case (100 nmol mol−1) this might have
shifted our estimate of kB by 0.008 parts in 106.
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(a) (b)

Figure 6. The GC-MSD output for (a) a gravimetrically spiked sample of 987 nmol mol−1 neon in argon and (b) the argon from Isotherm 5.
In (a) the 20Ne peak can be seen to the side of the much larger doubly-charged 40Ar peak and in (b) there is seen to be no trace of 20Ne in the
expected place. We conservatively estimate that the lowest detection limit (LDL) (and thus the maximum possible concentration consistent
with these data) is 30 nmol mol−1.

Table 3. Concentrations of other noble gases measured in this work
compared with quantities present in atmospheric air. Given the
non-detection of Ne, Kr and Xe in our sample gases, we cannot
envisage any physical mechanism which could have caused helium
to be present in our gas at a level greater than 10 nmol mol−1.

Amount fraction of gas in
argon/nmol mol−1 Ar

Source Helium Neon Krypton Xenon

Atmosphere [25] 5.24 18 1.1 0.09
Isotherms 3 and 4 <10 <30 <10 <10
Isotherm 5 <10 <30 <10 <10
Maximum error 0.009 0.015 −0.011 −0.023
on kB/ppm

Table 4. Specification of argon purity. The first column shows the
cylinder specification for gas sampled directly from the cylinder.
The second and third columns show the specification for input and
output of the SAES GC50 getter. In our system we used two GC50
getters in series.

Cylinder GC50/nmol mol−1 Ar
specification/

Impurities nmol mol−1 Ar Inlet Outlet

O2 <10 2000 <10
H2O <20 2000 <10
CO <500 500 <10
CO2 <500 500 <10
H2 NA 100 <10
CH4 <100 300 <10
N2 <5000 5000 <10

2.1.6. Variability. After the work reported here was
completed we made acoustic measurements on a further seven
cylinders of gas, using changes in the resonant frequency of
the (0, 3) acoustic mode at a pressure of 200 kPa and TTPW

(a condition of excellent signal-to-noise ratio) as a quick
diagnostic for variability in c2

0 and hence M/γ . Figure 7
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Figure 7. The observed variability of the speed-of-sound squared in
argon compared with gas used in Isotherm 5. The data were
estimated by measuring the resonant frequency of the (0, 3)
resonance with the gas close to the temperature of the triple-point of
water and at a pressure of 200 kPa. The graph shows twice the
fractional shift in the resonant frequency expressed as parts in 106.
Plotting the data in this way means the vertical axis is equivalent to
the fractional change in molar mass of the gas.

shows the observed variability scaled to the result using gas
from Isotherm 5. The resonant frequency was approximately
6104 Hz and one scale division on the graph corresponds
to a change in frequency of 0.003 Hz. Each data point is
the average of typically a few hundred measurements each
taking approximately 5 min. The relative standard uncertainty
of each estimate is typically 0.1 parts in 106, which is
approximately the size of each point on the graph. The long
term reproducibility can be gauged from two measurements
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on the gas labelled ‘Isotherm 8’ made three months apart.
In between the two measurements the apparatus had been
heated to 30 ◦C and the pressure repeatedly cycled from
100 kPa to 700 kPa.

The open red circles show data from Air Products BIP
argon. The observed changes are equivalent to a range of
2.3 parts in 106 in M/γ . The green diamond shows data for
Spectra Gases Spectra Grade gas imported from the USA.
The blue square shows gas from BOC 6N grade gas and has
an equivalent shift of 5.8 parts in 106 in M/γ .

At first we did not understand the origin of this variability
and we checked for several possible effects. We observed no
variation of c2

0 between gas sampled from a full bottle and the
same bottle when it was nearly empty. The abbreviation ‘BIP’
stands for built-in purifier—a molecular sieve built into the
outlet valve of the gas cylinder. To check for possible isotopic
fractionation effects, Ar 4193 was first measured directly
(open circle) and then after being decanted into a separate
bottle (filled circle), leaving 30 min for isotopic equilibration.
The small difference observed is close to the uncertainty of
measurement and is clearly not the origin of the observed
variability.

We tackled the possibility of chemical contamination
by installing a cold trap, replacing the getters, and adding
an additional large capacity cold getter and particle filter
(SAES Microtorr MC1902F). None of these steps affected the
observed frequency beyond the change detection-limit of 0.1
parts in 106. The gas used in Isotherms 6 and 7 was then subject
to a mass spectroscopic examination at SUERC (table 2) and
the molar mass of the gas was found to be heavier than the
gas used in Isotherm 5 by 1.97(17) parts in 106. The expected
shift in resonant frequency is shown as a cross on figure 7 and
coincides almost exactly with the measured shift in 2�f/f

of 2.0(1) parts in 106. Further studies will be undertaken in
due course, but we consider that this convincingly explains the
observed variability in the speed of sound as being solely due
to isotopic variability.

This observation supports previous reports of isotopic
variability in argon [15, 24]. The similarity of the isotopic
ratios of gas from Isotherms 3 and 4 and Isotherm 5 is not a
coincidence. Investigation revealed that the bottles have the
same ‘batch number’ and so are likely to have been filled
at nearly the same time from gas with similar composition.
The fact that independent measurements of their molar masses
differ by only 0.01 parts in 106 suggests that the estimated
type A uncertainty of the ARGUS mass spectrometer of uR =
0.169 × 10−6 may be conservative.

2.1.7. Overall estimate of uncertainty in molar mass. Our
measurements have found no evidence for impurity gases
which might significantly affect the molar mass. So our
overall uncertainty in (M/γ ) is uR(M/γ ) = 0.390 ×
10−6, the quadrature sum of the terms arising from isotopic
measurements uR = 0.390 × 10−6 and the detection limits of
other impurity gases uR = 0.022 × 10−6 (table 5).

Table 5. Uncertainty contributions to the estimate of the molar mass
M and the ratio M/γ .

uR(M) uR(M/γ )

×10−6 ×10−6 Comment

Isotopic 0.390 0.390 SUERC
Noble gases 0.020 0.020 GC-MSD

measurements
Non-noble 0.002 0.002 Gas and getter

gases specification
Water 0.055 0.008 Trace moisture

measurements

0.390 Quadrature sum

2.2. Temperature

2.2.1. Introduction. Our link to the current SI definition of
temperature is through realization of TTPW and the calibration
of six capsule standard platinum resistance thermometers
(PRTs) at that temperature. The two TPW cells used for
this work were compared with NPL’s reference TPW cells
in November 2009 and the realized temperatures differed
from the mean value of the reference cells by +10(42) µK
and +9(42) µK. One of the cells used in this work was also
compared with cells from across Europe in February 2010 and
was 31(50) µK above the CCT-K7 key comparison reference
value [30].

Electrically, the measurement of a PRT with uncertainty
below 1 mK is challenging: for a measuring current of 1 mA
and a resistance of 25 
, the voltage signal is 25 mV. For
an uncertainty of 0.1 mK this must be determined with a
resolution below 10 nV. To minimize transfer uncertainty
between the calibration condition and the measurement,
we used the same standard resistors and resistance bridge
(ASL F18) for calibration and experimental measurements.
Additionally the thermometers were transferred from the TPW
cell directly into the apparatus without the disconnection of
even a single electrical lead. This procedure significantly
reduces measurement uncertainty because any error in the
calibration caused by (say) an error in the estimated resistance
of the standard resistor, or some aberrant behaviour of the
bridge, will be automatically compensated in the measurement
condition.

2.2.2. Thermal gradient. With no power dissipated in the
resonator, we found that the resonator was—as expected—
nearly isothermal with temperature differences between
thermometers of at most 20 µK. However the dissipation
of microwave power warmed the equatorial thermometers
(PRTs 3 and 4) relative to the neck thermometer PRT 1
by 77(10) µK and dissipation in the acoustic pre-amplifier
caused a further warming of 280(10) µK and also gave rise
to a temperature gradient across the resonator. The estimated
uncertainty of 10 µK is a bridge reading uncertainty and is used
in all estimates of temperature differences in this section to
distinguish between experimental and model ‘measurements’,
which are shown without an uncertainty indication

After acoustic measurements were completed, the pre-
amplifier dissipation was estimated to be approximately
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Figure 8. The results of modelling the temperature gradients within the sphere. (a) A 3D model showing the location of the thermometers
and the pre-amplifier. Modelled temperatures are shown as differences from the mean inner-surface temperature in microkelvin. (b) The
model results for the inner surface of the resonator. (c) An unfolded map of the inner surface showing the hot spot and the pole-to-pole
gradient. Note that this presentation exaggerates the area of regions near the north and south poles. (d) Graph showing more fairly the
model results for the distribution of surface temperatures on the inner surface of the resonator, and the distribution of temperatures within the
gas. Also shown is the model expectation for the results from the equatorial thermometers PRTs 3 and 4.

1.7 mW by measurements of the dc current consumption and
voltage. Using this as a gauge allows us to estimate the likely
microwave dissipation as ∼0.5 mW, which may be compared
with the dissipation due to the thermometers of 6 × 25 µW =
0.15 mW.

To improve our understanding of the heat flow through
the resonator, we constructed a simplified thermal model in
Comsol (figure 8). Temperature differences were estimated
using 1000 times the nominal heat flux (1.7 W instead of
1.7 mW) in order to improve the stability of the numerical
solution. The heat sources were modelled as 1.7 mW
dissipated in a stainless steel cylinder attached to the sphere in
the same location as the preamplifier, and 0.5 mW uniformly
distributed across the inner surface of the sphere. The model
considered the effect of gas within the resonator, but neglected
gas outside the resonator, the holes in the flanges and the
thermal impedances at mating surfaces.

The model describes the temperature gradients within the
resonator only within a factor 2 (table 6). So for example
the measured difference between the equatorial thermometers

Table 6. Modelled and measured temperature differences (in
microkelvin) within the sphere shown as shifts from the average of
the equatorial thermometers. The lower two rows show the modelled
differences between the equatorial thermometers. PRT 2 was used a
control thermometer and so its temperature was not recorded.

n Model Measured

Neck 1 −186 −357(10)
Equator 3 & 4 0 0
South pole 5 & 6 +65 +91(10)
Average over inner surface +10
Average of gas +10

(PRTs 3 and 4) and ‘south pole’ thermometers (PRTs 5
and 6) was 91(10) µK compared with a model estimate of
65 µK. This difference might reflect small differences in the
structure around the pre-amplifier. Similarly, the difference
between the equatorial thermometers (PRTs 3 and 4) and
‘neck’ thermometer (PRT 1) was measured to be 357(10) µK
compared with a model estimate of 186 µK. This extra
temperature difference could possibly have arisen from the
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Table 7. Uncertainty contributions to the estimate of the temperature.

Temperature /mK uR/10−6 Comment

Realization of TPW 0.042 0.154 International and national comparisons
Temperature calibration 0.065 0.238 From calibration certificate
Calibration drift 0.011 0.040 Estimated from differences between thermometers

with acoustics and microwaves off
Bridge reading 0.010 0.037 SD ∼ 0.03 mK: Standard error of averaged bridge output
Gas temperature 0.053 0.194 Estimated from gradients in operating condition
Correction to TPW 0.001 0.004 Experiments generally within 1 mK of TPW
Self-heating correction 0.029 0.106 Extrapolation to 0 mA
Standard resistor stability 0.010 Estimated from resistor calibration history

0.099 0.364 Quadrature sum

mating surface between the neck and the sphere. This was a
copper–copper junction with one surface diamond-turned and
the other conventionally machined, but no thermal paste was
used. Nonetheless, despite its shortcomings, we consider the
model to be useful in interpreting the experimental data.

For example, experimentally we noted that when power
is dissipated within the resonator the temperature difference
between the neck thermometer PRT 1 and the equatorial
thermometers (PRTs 3 and 4) was larger than the temperature
difference between the equatorial thermometers and the ‘south
pole’ thermometers (PRTs 5 and 6). This can be understood
qualitatively in terms of the cross-sectional area of copper
through which the heat must flow to leave the resonator, and
the model also reproduces this behaviour.

The model predicts that PRT 1 should be approximately
90 µK hotter than the ‘north pole’ on the inner surface—and so
it is only a poor indicator of the ‘north pole’ temperature. In
contrast the model predicts that PRTs 5 and 6 should be 4 µK
cooler than the temperature of the inner surface at the ‘south
pole’. And significantly, the model predicts that PRTs 3 and 4
differ by only 10 µK from the average temperature of the entire
inner surface of the resonator which is also (within 1 µK) equal
to the volumetric average temperature of the gas within the
resonator. The model thus informs our choice of basing our
central estimate of the gas temperature on the average of the
equatorial thermometers, PRTs 3 and 4.

The model also allows us to estimate the distribution of
temperatures across the inner surface of resonator and also
within the gas (figure 8). Because PRT 1 in the neck is only a
poor indicator of the temperature at the ‘north pole’ of the inner
surface, we have chosen to estimate the range of temperatures
within the sphere as twice the temperature difference between
the equatorial thermometers (PRTs 3 and 4) and the south-
pole thermometers (PRTs 5 and 6). As we mentioned above,
the model predicts this difference should be 65 µK and the
experimental difference is 91(10) µK.

Figure 8(c) shows the modelled distribution of tempera-
ture across the inner surface of the surface of the sphere. It is
clear that there is a ‘hot spot’ near the microphone where the
temperature exceeds the average temperature of the sphere by
up to 143 µK. The region in excess of 100 µK corresponds to
an area of approximately 16 mm radius around the microphone
plug, and so corresponds to approximately 1.6% of the inner

surface area. If we model the volume of gas heated by this
area as a hemisphere of radius 16 mm, then this corresponds
to approximately 0.3% of gas within the resonator. In fact the
thermal model indicates that the heated volume is not quite
so large.

Figure 8(d) shows the distribution of temperature sampled
fairly over the inner surface of the sphere, and also from
within the volume of gas in the sphere. In the model 95%
of the inner surface of the resonator is within ±86 µK of the
mean temperature, a distribution which may be characterized
as approximately normal with a standard deviation of 41 µK.
Volumetrically, 95% of the gas is within ±63 µK of the mean
temperature, a distribution which may be characterized as
approximately normal with a standard deviation of 31 µK.

Although the temperature gradient is larger than we would
have planned, we consider that neither the ‘hot spot’ nor the
gradient are likely in themselves to affect the inference of c2

0.
The TBL is negligibly affected by temperature deviations at
this level, and because the propagation equations for sound
are linear for these sub-part-per-million deviations, we expect
that the resonant frequencies will closely reflect the average
temperature of the gas. Experimentally we consider that the
main consequence of the gradient is to introduce an additional
uncertainty reflecting possible differences between the average
gas temperature and the temperature of PRTs 3 and 4. Based on
the experimental 91(10) µK difference between the equatorial
thermometers (PRTs 3 and 4) and the south-pole thermometers
(PRTs 5 and 6) we consider it likely that the mean gas
temperature must lie in the range ±91 µK about the average of
the equatorial thermometers (PRTs 3 and 4). If we model this
as a range of uniform probability this results in an additional
uncertainty component u(T ) = 53 µK. We consider this a
relatively conservative estimate, even given the shortcomings
of the thermal model.

The overall uncertainty of the temperature is estimated
as the quadrature sum of eight terms (table 7) with
the four dominant contributions being: the realization
of the TPW (42 µK), the overall temperature calibration
uncertainty (65 µK), the effect of the temperature gradient
across the resonator (53 µK) and the correction of the
thermometer readings for self-heating (29 µK). Our final
standard uncertainty is u(TTPW) = 99 µK (uR(TTPW) =
0.364 × 10−6).
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Figure 9. Estimates of the radius aeq at around room temperature
deduced from eight TM1n modes as acoustic transducers and
microwave antennas are modified in four stages described in the
text. Measurements were taken in vacuum at several temperatures
close to room temperature, but for the purposes of comparison they
have been adjusted to show the value expected at 21.5 ◦C.

2.3. Equivalent radius

2.3.1. Surface perturbations. We need to estimate the
radius aeq seen by the acoustic sound field in the experimental
configuration, i.e. with tubes carrying gas in and out of
the resonator, with microwave antennas and with acoustic
transducers. To achieve this we monitored the microwave
spectrum as we inserted the acoustic transducers. Our estimate
of aeq involves four key measurements summarized in figure 9
and described in detail below. These measurements show
how estimates of aeq inferred from different microwave modes
varied as we inserted acoustic transducers into the resonator.

Measurement 1. In this measurement the resonator has two
microwave probes and a gas evacuation line. We estimated aeq

from each of the eight detectable TM microwave modes below
20 GHz. The maximum difference between the eight estimates
for aeq in vacuum is 7 nm (u = 2.6 nm) (figure 9—label 1).
This level of agreement arises from the exceptionally perfect
realization of the resonator shape.

Measurement 2. Two blank plugs were removed and replaced
with the plugs modified to accept acoustic transducers. Upon
re-insertion, the difference in plug protrusion produced a small
local deviation from the ellipsoidal form. From the change in
the microwave frequencies, we estimated the change in aeq was
�aeq = −42 nm (figure 9—label 2).

Prior to assembly—when we still had access to the inner
surface of the resonator—we had measured the volume
perturbation caused by the imperfect fit of the acoustic
transducer plugs. We did this using a quick-setting silicone
compound to create a negative impression of the plug and
the surrounding copper surface (figure 10). Using a confocal
microscope to examine the moulding we estimated a volume

Figure 10. Illustration of how the perturbation caused by protrusion
of the acoustic transducers was measured using a quick-setting
silicone compound.

change to be equivalent to �aeq = −32(10) nm, consistent
with the microwave result.

Measurement 3. The plugs carrying the acoustic transducers
were withdrawn and replaced. With the exception of TM17,
the resulting radius estimates (figure 9—label 3) were within
approximately 5 nm of measurement 2. This allowed us to
assess the reproducibility with which the transducers could be
inserted. The origin of the anomalous change in the TM17 is
discussed below.

Measurement 4. The plugs carrying the microwave probes
were then removed and the volume around the bare-wire
antennas filled with epoxy resin to ensure the equivalence of
the microwave and acoustic volumes (figure 9—label 4). Aside
from the TM16 mode, the radius estimates were mostly in
agreement with measurement 3, confirming both the positional
reproducibility of the plugs and the correction applied for the
epoxy filling. The magnitude of this correction was 4 nm for
the TM11 mode, and less than 1 nm for the other modes.

At the level of parts in 107 the microwave resonant
frequencies can be perturbed by surface effects within the
resonator, interference from neighbouring non-triplet modes,
and resonances in the cable and the connectors. The observed
dispersion (figure 9—label 4) is not caused by random noise,
but is characteristic of the configuration of the resonator and its
associated cables. As we have noted previously [11] surface
perturbations affect TM11 modes more strongly than higher
TM1n modes. However, at higher frequencies, the shorter
wavelength of the microwaves results in a high density of
standing-wave modes, in both the cable and connectors, and
within the resonator itself. These can resonantly couple to the
cavity at specific frequencies, causing spurious perturbations.
These perturbations can be easily detected because they affect
each component of a triplet differently—both in terms of its
frequency and its half-width. So, for example, by considering
the spacing of the modes within the triplet—which affects
estimates of the geometrical parameters ε1 and ε2—it is
possible to detect whether a radius estimate has been spuriously
affected. These spurious interferences are the responsible for
the anomalous high frequency results shown in traces 3 and 4
of figure 9.

When measured in the cryostat rather than a test vessel,
the microwave cables are longer and attenuation is increased
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Figure 11. The radius estimated in vacuum from each of the TM11
to TM15 mode triplets. The values are shown together with our best
overall estimate of aeq(P = 0) and overall standard uncertainty
u(aeq) = 11.7 nm (table 8).

at higher frequencies, degrading the high-frequency signal-
to-noise ratio. For these reasons we estimated aeq with the
acoustic transducers inserted using the average of the TM12 to
TM15 modes, which have a standard deviation of 2.0 nm. If
we include the TM11 mode in the average, the estimate for aeq

is shifted by 5 nm, and we use this to evaluate the uncertainty
associated with the variation of aeq with mode. The effect
of including or excluding the TM11 mode is included in the
uncertainty assessment (table 8).

Our radius estimate together with its overall uncertainty
is shown in figure 11 in comparison with the microwave data
from which it was derived.

2.3.2. Dielectric corrections for argon. The steps described
in section 2.3.1 are relevant to determining the radius of
the resonator in vacuum. Microwave measurements were
made throughout all the isotherms which allowed estimates
of aeq to be made as a function of gas temperature and
pressure. However determining aeq requires compensating
for the frequency shift arising from the dielectric constant
of argon [31]. This correction is large—approximately 274
parts in 106 for a gas pressure of 100 kPa—and so amounts to
approximately 1918 parts in 106 for a gas pressure of 700 kPa.
To correct for this requires knowledge of the gas density
which is estimated from independently acquired pressure
and temperature data and the known virial coefficients and
dielectric constant for argon. If the pressure is estimated
incorrectly then the apparent radius will show anomalous
variations [21].

Figure 12 shows the corrected radius estimate as a function
of pressure. The data are clearly linear with residuals
(figure 13) on the order of 1 nm. These results correspond
to measurements taken over three months during which the
resonator was cycled in pressure. It is clear that the resonator
is remarkably dimensionally stable. The residuals also allow
us to estimate how wrong our pressure measurements could be.

Our Ruska 7000 pressure indicator was calibrated before
and after these experiments against a pressure balance with
a relative standard uncertainty of uR ∼ 3 × 10−5 (∼3 Pa
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Figure 13. The residuals of a linear fit to the estimated radius as a
function of pressure, aeq(P ) shown in figure 12. The data were
acquired over a period of three months during several pressure
excursions over the entire pressure range. The residuals can be
interpreted as either a radius error (left-hand axis) with a standard
uncertainty of 1.1 nm or a pressure error (right-hand axis) with a
standard uncertainty of 6.3 Pa. The data point at 0 Pa corresponds to
a measurement made in vacuum and so has no dielectric correction.
The shaded band shows the estimated range of possible pressure
errors based on our traceable pressure calibration.

at 100 kPa and ∼21 Pa at 700 kPa). On recalibration after
this work, the table of corrections showed changes of less
than 10 Pa at all pressures. To eliminate drift of the pressure
indicator during the experiments, it was re-zeroed against a
turbo-molecular pump at each new pressure setting. After
correction for the aero-static head, this gives us a traceable
pressure measurement in the volume outside the resonator.
To obtain the pressure measurement within the resonator we
applied a correction based on measurements of changes in
dielectric constant as a function of gas flow.

If our pressure estimate exhibited an offset then the
extrapolation of the pressure data in figure 12 (aeq =
62.010 539 8 mm) would not fall close to the zero pressure
datum taken in vacuum—i.e. P < 10 Pa. Similarly, if our
pressure estimate exhibited a non-linear error, the residuals to a
straight-line fit would not be randomly distributed. Re-casting
the residuals as being due to pressure errors (figure 13 right-
hand axis) we can eliminate the possibility of any non-linear
errors in pressure measurement, and find the dispersion is
characterized by a standard deviation of 6.3 Pa, consistent with
our pressure calibration. As mentioned in section 1.2.8, this is
of particular significance at low pressures, in ensuring that the
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Table 8. Uncertainty contributions to the estimate of the equivalent radius.

aeq /nm uR/10−6 Comment

Statistical 0.3 0.005 From the intercept of aeq versus pressure
Acoustic transducers 2.0 0.032 Standard deviation of five modes
Acoustic transducers 5.0 0.081 Shift on inclusion of TM11
Frequency reference 0.0 0.000 Rubidium clock was stable to 1 part in 109

Resonance fitting 1.0 0.016 Estimated from covariance
Surface conductivity 2.5 0.040 Uncertainty in skin depth as discussed in [11]
Waveguide correction 7.2 0.116 Perturbation by waveguides as discussed in [11]
Dielectric layer 7.0 0.113 Estimated maximum thickness [11]

11.712 0.189 Quadrature sum

TBL correction to the acoustic resonant frequencies is made
correctly and consistently between different isotherms taken
several months apart.

The contraction of 2.3 parts in 106 seen in figure 12 is
approximately 25% greater than would be expected from the
compressibility of the copper walls of the resonator. The
difference could arise because our resonator is a composite
object, or because the dielectric constant of argon is in error
by approximately 3 parts in 104. In either case, it makes no
difference to our estimate of c2

0, but would be a small additional
source of uncertainty in estimating the virial coefficients of
argon.

2.3.3. Summary. The overall uncertainty in the radius was
estimated as the quadrature sum of eight terms (table 8).
The three dominant contributions were: uncertainty in the
correction for the microwave antennas (7.2 nm), the dispersion
of radius values caused by inserting the acoustic transducers
(5.0 nm) and the uncertainty in the effect of dielectric surface
layers (7.0 nm).

2.4. Speed of sound

2.4.1. Introduction. Our estimate of the limiting low-
pressure speed of sound is deduced using data from Isotherms
3, 4 and 5. For each isotherm we held the temperature close to
TTPW as we reduced the pressure from 700 kPa to 100 kPa in
50 kPa steps. At each pressure we made 10 measurements
of the (0, 2) to (0, 9) acoustic resonances with a gas flow
of 7.4 × 10−7 mol s−1 (1 sccm) through the resonator. After
the main measurements, we extended our study to the lower
pressure range between 100 kPa and 30 kPa in 10 kPa steps,
with increased data coverage at each pressure to reduce the
statistical uncertainty.

Our experimental estimates c2
Exp(P ) are deduced

according to equation (4) by first correcting the resonant
frequencies f(0,n) for known perturbations, then dividing by the
appropriate eigenvalue ξ(0,n), then multiplying by the estimated
radius aeq(P ).

The speed of sound in argon depends on pressure through
non-linearities in the dependence of gas density on pressure.
The virial equation of state predicts a polynomial dependence
of c2

Exp with pressure [13] which we curtail at order 3 due
to the small size of higher-order terms in this pressure range.
However, the experimental estimates c2

Exp(P ) derived from the
resonator display a more complex pressure dependence.

Firstly, the term linear in pressure (coefficient A1) depends
not only on changes in gas density, but also on the interaction
between the radially symmetric acoustic oscillations and the
‘breathing’ resonance of the shell of the resonator [6, 32]
which occurs at approximately 14.2 kHz, between the (0, 6)
and (0, 7) resonances. This introduces a mode dependence
into the A1 terms from different (0, n) resonances. Neglecting
the (0, 6) which is drastically broadened by the shell effect, the
extent of the shell-induced variability in c2

Exp(P = 700 kPa) is
approximately ±100 parts in 106 for modes (0, 2)–(0, 5) and
(0, 7)–(0, 9). This amounts to approximately 5% of the 1980
parts in 106 due to the virial properties of argon. Moldover
et al [13] used a maximum pressure of 500 kPa and a stainless
steel resonator for which the shell correction is approximately 3
times smaller. For the (0, 2) to (0, 6) resonances Moldover was
able to apply an analytical correction (amounting to 20 parts
in 106 at most), removing the need to separately fit each mode.
We chose to make the resonator from copper to enable precision
fabrication, simultaneous precision microwave measurements
and to benefit from the excellent thermal conductivity of
copper. This has resulted in a concomitantly larger shell
correction which must be ‘fitted’ rather than corrected for. Our
modelling indicates that this does not affect estimates of c2

0.
Secondly, the TBL correction contains a ‘thermal

accommodation’ term which depends on the extent of the
equilibration of argon molecules with the wall of the resonator.
This cannot be predicted a priori but may be evaluated by
fitting an additional A−1P

−1 term [13, 15]. In order to
arrive at a form to which we can fit the data, we note that
over the limited pressure range of this work, the A3 term
cannot be well estimated, and so before fitting our data, we
subtract an estimate of the term derived from work at higher
pressure [14, 33, 34]:

c2
Exp(P ) − A3P

3 = c2
0 + A−1P

−1 + A
(0,n)
1 P + A2P

2 (5)

2.4.2. The effect of gas flow. We chose to flow gas through
the resonator so as to avoid possible outgassing effects on
gas purity. Aside from a small change in pressure caused
by the flow impedance of the tubes carrying gas in and out
of the resonator we had not anticipated any flow-dependent
effects. However Pitre et al [14] did observe an anomalous
change in resonant frequencies as a function of flow and so
we carried out an investigation (figure 14) and observed an
effect similar in magnitude to that observed by Pitre et al [14].
However we observe an increase of frequency with flow while
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Figure 14. The effect on the frequency of the (0, 3) resonance at
pressures of 300 kPa and 700 kPa shown relative to the minimum
resonant frequency. The units of flow are standard cubic centimetres
per minute (sccm) and 1 sccm = 7.4 × 10−7 mol s−1. The arrow
shows the flow rate used in this work. We conclude that at 1 sccm,
any frequency effect is negligible.

Pitre et al observe a decrease. We have not established any
definitive cause of this effect, but we agree with Pitre (private
communication) that it may be connected with the formation
of vortices as the gas enters the resonator.

At a flow rate of 1 sccm the effect of flow is small,
if not zero. Consequently we have chosen not to make
a correction and also not to add an additional uncertainty
component because the component (uR ∼ 0.02×10−6) would
have a negligible impact on the overall uncertainty, changing
uR(c2

0) ∼ 0.43 × 10−6 by ∼0.001 × 10−6. Our experimental
approach of using the lowest possible flow contrasts with Pitre
et al [14] who used flow rates varying between 1 sccm and
60 sccm, using an empirical fitting function to estimate the
zero-flow value.

2.4.3. Data reduction and fitting procedure. We have
adopted a fitting procedure which shows that the data are
demonstrably consistent with the model assumptions. To
achieve this we combined c2

Exp(P ) data from Isotherms 3, 4
and 5 into a single data model. First, repeated measurements
on a particular resonance at a particular pressure were averaged
and the type A standard uncertainty calculated (figure 15).
We then created a pooled relative standard uncertainty value
uR(c2

Exp(P )) based on the type A uncertainties to yield a single
type A uncertainty applicable to every mode at a particular
pressure. We then fit all the data to a single model as discussed
in section 2.4.1.

The pooled estimate for uR(c2
Exp(P )) was estimated as the

square root of the average of the variances of each estimate
for c2

Exp at each pressure. As figure 15 shows, the pooled
estimate of the type A uncertainties averages modes which
have a low type A uncertainty with modes which have a higher
type A uncertainty. Each individual type A estimate is derived
from data taken over a few hours, but the pooled estimate is
used to estimate the random variability of data taken several

months apart. So it is not surprising that that uR(c2
Exp(P ))

is an underestimate of the scatter of the data at a particular
pressure, and needs to be ‘inflated’ to fairly describe the fit
to the data. The pooled estimate changes abruptly at 100 kPa
because at lower pressures we took more data, which reduces
the standard uncertainty considerably.

Isotherms 3 to 5 each yield 13 data pairs P , c2
Exp for each

of the (0, 2) to (0, 5) and (0, 7) to (0, 9) resonances, the (0, 6)
data being excluded because of the strong shell interaction.
In addition, after Isotherm 5 we acquired lower pressure data
(30 kPa to 90 kPa in 10 kPa steps) from all resonances. After
initial consideration, we also eliminated the (0, 5) data from
all isotherms because on examining the residuals to initial fits,
the (0, 5) residuals were clearly not normally distributed. The
effect of this choice is discussed below. The residuals of an
initial fit to the data (277 points) showed 14 anomalous data
points. The 600 kPa data for all modes for Isotherm 5 (6
points) were eliminated because the wrong flow setting had
been used. The low-pressure data from the (0, 7) resonance (5
points) were eliminated because the excess half-widths were
too large due to interference from broadening of neighbouring
modes. Additionally we removed a further three unexplained
anomalous points.

Our final data set had 263 points and our model had nine
free parameters. Using information provided by a chi-squared
test, the pooled standard uncertainty was found to be too small
to model the data, but when increased by a factor 2.28, 96% of
the 263 points fell within ±2 standard uncertainties of the fit,
indicating that the data are consistent with the model. The fit
yielded an estimate of c2

0 with a relative standard uncertainty of
uR(c2

0) = 0.181 × 10−6, indicating a very high degree of self-
consistency among the modes and between isotherms taken
three months apart. The normalized residuals of fits to the
data are shown in figure 16. Given that we chose to use a
pooled uncertainty rather than a conservative value, this seems
reasonable. However, it does indicate that other factors may
be giving rise to some variability among the data.

Table 9 shows the parameters of the best fit to the
data from Isotherms 3, 4 and 5. To assess the effect of
uncertainty in the A3 term, the entire data analysis procedure
was calculated twice, first with our central estimate A3 =
1.45 × 10−9 m2 s−2 kPa−3 subtracted from the data and then
with a second estimate A3 = 1.20 × 10−9 m2 s−2 kPa−3

subtracted. This change increased the value of c2
0 by 0.213

parts in 106. However following Pitre et al [14], the uncertainty
in A3 is smaller than this shift and is best estimated by
the standard deviation of the three literature values [33, 34]:
u(A3) = 0.09 × 10−9 m2 s−2 kPa−3. We thus scaled this
shift by 0.09/0.25 to arrive at the concomitant uncertainty
u(c2

0) = 0.077 parts in 106.
To assess the effect of our choice to exclude the (0, 5) data

we reanalysed all the data including the entire (0, 5) dataset
from Isotherms 3 to 5. No parameters were strongly affected
and the estimate of c2

0 was increased by 0.10 parts in 106, within
the standard uncertainty of 0.18 × 10−6. The (0, 5) resonance
did not appear in any way anomalous during Isotherms 1 and 2,
but the (0, 7) resonance did. We consider that the most likely
explanation of this is that small mechanical modifications made
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Figure 15. The type A standard uncertainty of each mode at each pressure. In our analysis the pooled uncertainty (shown as a thick dotted
line) was used. In order to obtain statistical consistency, the pooled uncertainty was inflated by a factor 2.28 (shown as a full line). The data
are shown with the vertical axis scaled logarithmically for (a) all the data considered collectively, and (b) to (h) for each mode in turn, with
data identified by isotherm.
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Figure 16. Residuals of the fit to the data using the parameters in table 9. The residuals from Isotherms 3, 4 and 5 are shown separately, but
the fit has been made to all the data collectively. The legend in (a) applies to all panels. (a), (b) and (c) show the residuals in c2

0 and the
inflated uncertainty estimate described in figure 15 is shown as a dotted line and a shaded band. (d), (e) and (f ) show the residuals in c2

0
normalized to the inflated uncertainty estimate. The darker shaded band (±uR) corresponds to the shaded band in panels (a), (b) and (c).
The lighter shaded band corresponds to ±2uR within which 96% of the residuals lie.

to the resonator support after Isotherm 2 affected either the
position of the main shell resonances or another ‘parasitic’
mechanical resonance.

From the A−1 term we estimate the thermal accommoda-
tion factor h = 0.777(13) using

h = 2

1 +
A−1

Kc2
0

(6)

where K = 0.254 26 Pa for a resonator of aeq = 62 mm. This
value is typical of those reported in the literature [15].

From the six A
(0,n)
1 parameters we estimated the second

acoustic virial coefficient of argon to be 5.438(12) cm3 mol−1

using the procedure described by Pitre et al [35] to subtract
the effect of the shell. This is approximately 0.4% higher than
Pitre et al’s estimate of 5.4157(1) cm3 mol−1. The analysis
estimates the shell breathing-mode frequency to occur at
approximately 14.2 kHz.
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Table 9. Column 1 shows the best fit parameters to our data set and their standard uncertainties. Columns, 2 to 5 show the effect of changing
some parameters and refitting the dataset. The shifts in c2

0 (shown in parts in 106) are used to estimate the type B uncertainty to associate
with each term (table 10). Column 2 shows the results of changing the A3 term from our central estimate of A3 = 1.45 × 10−9 m2 s−2 kPa−3

to A3 = 1.20 × 10−9 m2 s−2 kPa−3. Column 3 shows the results of changing the estimated thermal conductivity of argon λ to λ + u(λ).
Column 4 shows the results of a revised estimate of the TBL correction recalculated with P + u(P ). Column 5 additionally shows the effect
of a worst case pressure error consistent with our calibration. This consists of a 6.3 Pa offset and linear error resulting in a pressure error of
13.5 Pa at 700 kPa. At the resolution shown, the addition of the linear term makes no difference to any of the terms in table.

1 2 3 4 5

Central Effect of A3 Effect of thermal Effect of pressure Effect of pressure
estimate uncertainty conductivity uncertainty offset offset + linear Units

�λ 0 0 +u(λ) = 0.1% 0
�P 0 0 0 +u(P ) = 6.3 (6.3 + 1.02) × 10−5P Pa
A3 1.45 × 10−9 1.20 × 10−9 1.45 × 10−9 1.45 × 10−9 1.45 × 10−9 kPa−3 m2 s−2

A−1 37.9(11) 37.1(11) 37.6(10) 38.4(11) 38.4(11) kPa m2 s−2

c2
0 94 756.245(17) 94 756.265(17) 94 756.229(17) 94 756.235 (17) 94 756.235(17) m2 s−2

�c2
0 0 +0.213 −0.169 −0.106 −0.106 parts in 106

A1(0, 2) 0.221 588(65) 0.221 449(65) 0.221 627(64) 0.221 628(65) 0.221 628(65) kPa−1 m2 s−2

A1(0, 3) 0.220 508(65) 0.220 369(65) 0.220 552(64) 0.220 547(65) 0.220 547(65) kPa−1 m2 s−2

A1(0, 4) 0.217 721(65) 0.217 583(65) 0.217 768(64) 0.217 761(65) 0.217 761(65) kPa−1 m2 s−2

A1(0, 7) 0.246 135(65) 0.245 996(65) 0.246 185(64) 0.246 175(65) 0.246 175(65) kPa−1 m2 s−2

A1(0, 8) 0.234 000(65) 0.233 861(65) 0.234 051(64) 0.234 040(65) 0.234 040(65) kPa−1 m2 s−2

A1(0, 9) 0.231 544(65) 0.231 405(65) 0.231 595(64) 0.231 584(65) 0.231 584 (65) kPa−1 m2 s−2

A2 5.0847(66) × 10−5 5.1179(66) × 10−5 5.0804(65) × 10−5 5.0809(66) × 10−5 5.0809(66) × 10−5 kPa−2 m2 s−2

2.4.4. Uncertainty in the TBL. In our previous work [16] we
estimated the sensitivity of estimates of c2

0 to type B errors in the
estimation of the TBL. In that work we considered the effect
on estimates of the TBL of errors in temperature, pressure,
molar mass, radius, thermal conductivity, viscosity, the second
and third virial coefficients of argon and their first and second
derivatives with respect to temperature. A similar calculation
for this resonator reveals that the only significant contributions
to the uncertainty in the TBL correction arise from uncertainty
in the thermal conductivity of argon, λ and the pressure P .

To estimate the impact of uncertainty in λ we re-estimated
the correction due to the TBL for each mode and each
pressure using values of λ which had been changed by one
standard uncertainty. We estimated λ in the limit of zero
pressure from the work of May et al [36] which has a
relative standard uncertainty of 0.084%. Corrections for
the pressure dependence were made using viscosity virial
coefficients [37] leading to an overall relative uncertainty of
u(λ) = 0.1% (figure 17). Refitting the modified dataset
(table 9) resulted in a fractional change in our estimate of c2

0
of 0.169 parts in 106. Our estimate of λ was deduced in a
similar manner to Pitre et al [14], but at 100 kPa our estimate
(16.409(16) mW m−1 K−1) differs from the estimate of Pitre
et al (16.419(4) mW m−1 K−1) by 0.01 mW m−1 K−1. This
difference is within our uncertainty estimate but outside Pitre
et al’s uncertainty estimate. In addition to using an uncertainty
estimate which is four times larger than Pitre et al’s, we also
estimate the sensitivity of c2

0 to changes in λ to be more than
twice as large as Pitre et al.

To estimate the impact of uncertainty in pressure we
re-estimated the correction due to the TBL for each mode and
each pressure using values of P which had been changed in
two ways. The first change was an offset of u(P ) = 6.3 Pa
in line with the standard deviation of the data shown in
figure 13. The second change was an offset plus a linear error
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Figure 17. The values of thermal conductivity used in the
calculation of the TBL. The shaded band shows the range ±0.1%,
our estimated uncertainty. Also shown is the value quoted by Pitre
et al [14].

derived from the table of corrections for the pressure meter,
u(P ) = (6.3 + 1.02) × 10−5P . This correction forms the
boundary of the shaded region in figure 13. Refitting these
modified datasets (table 9) resulted in fractional changes in
our estimate of c2

0 of 0.106 and 0.106 parts in 106 respectively.
Interestingly, to the number of significant figures shown in the
table, the additional linear error in pressure had no effect on the
fitted parameters. Our calculated sensitivity to pressure errors
is 21 times larger than Pitre et al’s.

From these changes in λ and P we estimate type B
uncertainties (table 9) which we add in quadrature with the
type A statistical uncertainty and A3 uncertainty estimates.

Our final estimate of the limiting low-pressure speed of
sound squared in argon is c2

0 = 94 756.245(45) m2 s−2 with
an overall relative uncertainty uR(c2

0) = 0.470 × 10−6 where
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Figure 18. Difference �g/f between experimental and theoretical
half-widths of resonances from Isotherm 5 calculated using the
second-order theory of Gillis [38] and expressed as a fraction of the
resonance frequency, f . Notice that the (0, 7) and (0, 9) resonances
have half-widths that increase rapidly at low pressure. These
resonances were affected by broadening of nearby non-radial
resonances. All the other resonances show a trend with
extrapolations to zero within the uncertainty with which the
theoretical half-width can be evaluated.

the dominant term (uR(a2
eq) = 0.378 × 10−6) arises from

uncertainty in aeq (section 2.3).
The fitting procedure is implemented in a Matlab script

which reads data from an Excel spreadsheet. The spreadsheet
and script file are available for downloading as supplementary
material from stacks.iop.org/Met/50/354/mmedia.

2.4.5. Excess half-widths. The TBL both shifts the
frequencies of acoustic resonance, thus affecting our estimate
of c2

0, and also broadens them by an equal amount. So analysis
of the half-widths (g) of the resonances provides a check on the
TBL correction to the frequencies (f ) [21]. Figure 18 shows
the difference (�g/f ) between the experimentally measured
half-widths (gExp/f ) and the theoretical estimates (gTheory/f )

plotted normalized to the resonant frequency.
The low-pressure increase of the excess half-width for

the (0, 7) and (0, 9) resonances is caused by the broadening
of neighbouring non-radial resonances. The increase at high
pressure is related to the interaction of the acoustic resonances
with the shell resonance. The trend of the excess half-widths
is to zero—within the uncertainty with which the half-width
can be estimated.

We have evaluated gTheory using a theory correct to second-
order in the ratio of the TBL to the radius [38]. This
theory predicts a mode-dependent line-narrowing compared
with first-order theory, but no shift in the resonant frequencies.
Without the second-order correction, our data would appear to
give a negative excess half-width, i.e. the acoustic line widths
would appear to be narrower than predicted by the first-order
theory.

The acoustic resonance line-widths are related to the
dissipation of acoustic energy within the resonator. The fact

Table 10. Summary of the terms contributing to our uncertainty
estimate for c2

0.

c2
0 /m2 s−2 uR/10−6 Comment

Statistical 0.017 0.181 k = 1 parameter
uncertainty from fit

a2
eq 0.036 0.378 2×Total aeq uncertainty

A3 uncertainty 0.007 0.077 Effect of u(A3) term
from [31] or [32]

λ uncertainty 0.016 0.169 Effect of a thermal
conductivity error of 0.1%

P uncertainty 0.010 0.106 Effect of a pressure
offset of 6.3 Pa

0.045 0.470 Quadrature sum

Table 11. Estimates of R and kB and associated uncertainty. The
last column labelled ‘weight’ shows the percentage contribution of
each term to the overall uncertainty.

Estimate uR/10−6 Weight

M g mol−1 39.947 816(17) 0.390 30.0%
T K 273.160 000(99) 0.364 26.1%
c2

0 m2 s−2 94 756.245(45) 0.470 43.6%

R J K−1 mol−1 8.314 478 7 (59) 0.711
NA mol−1 6.022 141 29 (27) × 1023 0.044 0.4%

kB J K−1 1.380 651 56 (98) × 10−23 0.712

that—in the limit of zero pressure—we have no excess line-
width confirms that there are no unaccounted-for dissipative
mechanisms operating in the resonator, at least within the
uncertainty with which the theoretical half-widths may be
predicted.

2.4.6. Summary. Table 10 shows the three terms that
contribute to the final estimate of the uncertainty in our
estimate of the limiting low-pressure speed of sound squared,
c2

0. The dominant uncertainty is that due to uncertainty in the
resonator size.

2.5. Boltzmann constant

Our results from sections 2.1 to 2.4 are combined using
equation (1) to yield estimates for R and kB. The relative
standard uncertainty in R is estimated as the quadrature sum of
the relative standard uncertainties in M , c2

0 and T . The standard
uncertainty in kB additionally includes the standard uncertainty
in NA (table 11). We find R = 8.314 478 7(59) J K−1 mol−1

which corresponds to kB = 1.380 651 56(98) × 10−23 J K−1.
When restricted to two significant figures, both values have the
same relative standard uncertainty uR = 0.71 × 10−6.

2.6. Uncertainty table

For convenience, all the component uncertainty tables for
molar mass (table 5), temperature (table 7), equivalent radius
(table 8) and speed-of-sound squared (table 10) are shown
together in table 12.
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Table 12. A combined uncertainty table. The ‘weight’ column shows the fraction of the overall uncertainty attributable to each component.

Molar mass/gamma Weight uR/10−6 Comment

Isotopic type A 5.6% 0.169 From the standard deviation of SUERC isotope ratios
Reference to Lee et al 24.3% 0.351 From the uncertainty in the estimation by Lee et al

of the argon isotope ratios in air [28]
Noble gas impurities 0.1% 0.020 Based on GC-MSD measurements
Non-noble gas impurities 0.0% 0.002 Based on gas and getter specifications
Water 0.0% 0.008 Based on trace moisture measurements

30.0% 0.390 0.3902 (Additional digits)

Temperature Weight /mK uR/10−6 Comment

Realization of TPW 4.7% 0.042 0.154 International and national comparisons
Temperature calibration 11.2% 0.065 0.238 From calibration certificate
Calibration drift 0.3% 0.011 0.040 Estimated from differences between thermometers

with acoustics and microwaves off
Bridge reading 0.3% 0.010 0.037 SD ∼ 0.03 mK: Standard error

of averaged bridge output
Gas temperature 7.4% 0.053 0.194 Estimated from gradients in operating condition
Correction to TPW 0.0% 0.001 0.004 Experiments generally within 1 mK of TPW
Self-heating correction 2.2% 0.029 0.106 Extrapolation to 0 mA
Standard resistor stability 0.0% 0.010 Estimated from resistor calibration history

26.1% 0.099 0.364 0.3637 (Additional digits)

aeq Weight /nm uR/10−6 Comment

Statistical 0.0% 0.3 0.005 From the intercept of aeq versus pressure (figure 12)
Acoustic transducers 0.8% 2.0 0.032 SD of five modes
Acoustic transducers 5.2% 5.0 0.081 Shift on inclusion of TM11
Frequency reference 0.0% 0.0 0.000 Rubidium clock was stable to 1 part in 109

Resonance fitting 0.2% 1.0 0.016 Estimated from covariance
Surface conductivity 1.3% 2.5 0.040 Uncertainty in skin depth as discussed in [11]
Waveguide correction 10.6% 7.2 0.116 Perturbation by waveguides as discussed in [11]
Dielectric layer 10.1% 7.0 0.113 Consequence of the use of TM modes only [11]

28.1% 11.712 0.189 0.1889 (Additional digits)

c2
0 Weight /m2 s−2 uR/10−6 Comment

Statistical 6.5% 0.017 0.181 k = 1 parameter uncertainty from fit.
a2

eq 0.036 0.378 2×total aeq uncertainty
A3 uncertainty 1.2% 0.007 0.077 Effect of u(A3) term from [33] or [34]
λ uncertainty 5.6% 0.016 0.169 Effect of a thermal conductivity error of 0.1%
P uncertainty 2.2% 0.010 0.106 Effect of a pressure offset of 6.3 Pa

15.4% 0.045 0.470 0.4703 (Additional digits)

Avogadro constant /mol−1 uR/10−6 Comment

NA 0.044 CODATA 2010 [5]

Overall Weight uR/10−6 Additional digits

M/γ0 30.0% 0.390 0.3902
T 26.1% 0.364 0.3637
c2

0 43.6% 0.470 0.4703
NA 0.4% 0.044 0.0440

Total R 0.711 0.7111
Total kB 0.712 0.7125

3. Discussion

3.1. Comparison with previous work

3.1.1. Overall results. In this section we refer to previous
works using the labels used by CODATA [5]. Table 13
and figure 19(a) show our result alongside the previous two
most accurate estimates of kB. Our estimate is 0.93 parts
in 106 above the NIST 1988 value [13] but the difference

is not statistically significant, being only half the standard
uncertainty in the difference. Our result is 2.74 parts in 106

above the LNE 2011 value [14] and the difference is significant,
being twice the standard uncertainty in the difference. Our
result is 2.00 parts in 106 higher than the CODATA 2010
value [5] because the CODATA 2010 value is heavily weighted
by the LNE 2011 result.

When comparing results which are all close to the limits
of what is technically possible, it is important to consider
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Table 13. Comparison of estimates of kB, M and c2
0 between this work, NIST 1988 and LNE 2011. The uncertainty in c2

0 for this work is
from table 12, and the uncertainties in other works are from intermediate steps in their publications. LNE 2011 contains a small error in the
reported value of c2

0 but the result has been checked with the author. The results are plotted in figure 19.

This work NIST 1988 LNE 2011

kB J K−1/10−23 1.380 651 56 (98) 1.380 6503 (25) 1.380 6478 (171)
Fractional difference/10−6 0.00(71) −0.93(180) −2.74(116)
compared to this work

M g mol −1 39.947 816(16) 39.947 807(32) 39.947 805(6)
Fractional difference/10−6 +0.40, +0.41(17) +0.18(79) +0.14(15)
compared to Lee et al (21)

c2
0 m2 s−2 94 756.245(40) 94 756.178(65) 94 756.011(110)

Fractional difference/10−6 0.00(42) −0.70(69) −2.47(116)
compared to this work
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Figure 19. Differences in (a) kB, (b) M and (c) c2
0 between this

work, NIST 1988 and LNE 2011. The vertical scale has the same
magnitude for all graphs. (a) The final result with published
uncertainty. The results are plotted as parts in 106 difference
between (on the left-hand scale) our result and (on the right-hand
scale) CODATA 2010 recommended values. The shaded band
is the CODATA combined uncertainty at k = 1. (b) The molar
mass estimates of the three works plotted as differences from
the recommended values of Lee et al for atmospheric argon.
(c) Estimates of c2

0 plotted as differences from this work.

not just the simple combination of component uncertainties,
but also the overall robustness of conclusions against possible
systematic effects. Each of the three kB estimates in table 13
(figure 19) is the result of combining estimates of the three
factors in equation (1): T , c2

0, M . In turn below we consider

differences between our work and others in the estimation of
these factors with particular focus on the cause of the difference
between this work and that of LNE 2011.

All the works were carried out close to TTPW and used
broadly similar techniques to transfer the TTPW to their
apparatuses. To explain the difference between this work and
LNE 2011 by a temperature error alone would require an error
of 0.76 mK which is unlikely in either work. From the results
for c2

0 and M (table 13, figures 19(b) and (c)) it is clear that
the molar mass estimates are similar, but that the estimate for
c2

0 from LNE 2011 is significantly lower than this work or
NIST 1988.

3.1.2. Speed of sound. Our combined microwave and
acoustic measurements permit four distinct types of internal
consistency checks in our estimate of c2

0 which increase the
overall robustness of our conclusion [21].

Firstly, we estimate c2
0 by extrapolation of c2(P ) data from

six acoustic resonances varying in frequency from 3.6 kHz
to 21.1 kHz. We thus span a wide range of systematic
corrections, most notably that due to the TBL. The relative
standard uncertainty associated with mode-to-mode variability
of c2

0 is uR = 0.181 × 10−6, which indicates an exceptional
level of self-consistency, approximately two times better than
LNE 2011.

Secondly, the equivalent radius of the resonator, aeq,
which is a key input to our estimate of c2

0, is the result of an
exceptional series of characterizations and checks. To explain
a discrepancy between this work and LNE 2011 would require
an error of approximately 1.35 parts in 106 or 85 nm on the
radius compared with our uncertainty estimate of 11.7 nm. We
consider such an error is inconceivable.

Thirdly, we used microwave resonances to additionally
measure the dielectric permittivity of the argon gas, providing a
self-consistency check on our pressure measurements meaning
errors were unlikely to exceed u = 6.3 Pa, which reinforces
our traceable calibration estimate of uR ∼ 3 × 10−5. In this
way we avoided uncertainties arising from the pressure errors
on the order of 100 Pa reported in LNE 2011. This is critical
at low pressures where pressure-dependent corrections are
largest.

The sensitivity of an individual estimate of c2
Exp(P, n)

from a single mode at a single pressure can be inferred from
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figure 4(b). But the sensitivity of c2
0 to such errors is difficult to

assess analytically, because it depends in a non-linear fashion
on the choice of modes used in the fit, the pressure range
over which data are acquired, and the weighting of data from
different pressures and modes. We are currently investigating
the relative significance of these factors.

Fourthly, the extent to which the experimental half-widths
match the theoretically expected half-widths gives us an insight
into the possibility of unexpected physics taking place within
the resonator (section 2.4.4). Our agreement with the second-
order theory of Gillis [38] rules out a wide range of possible
confounding mechanisms that might affect our inference of
kB. Both LNE 2011 and NIST 1988 reported positive excess
half-widths on the order of 1 part in 106 when compared with
first-order theory.

3.1.3. Molar mass. Our estimate is the result of a campaign
of measurements over two years involving measurements at
NPL, SUERC [19] and Air Products Ltd, the supplier of
our argon gas. The differences in molar mass (table 13,
figure 19) between this work, NIST 1988 and LNE 2011 are
small compared with the variability reported in the literature
[15, 24, 27, 28]. We consider it unlikely that this could be the
origin of the discrepancy, but our estimate does rely on the
estimate of molar mass of atmospheric argon made by Lee et
al [28]. If that estimate were to be revised then our estimate
for kB would need to be adjusted accordingly.

3.2. Summary

The significant difference between this work and LNE 2011
stems mainly from a difference in the estimate of c2

0, and the
origin of this discrepancy is not currently understood.

Examination of the contributions to measurement
uncertainty in kB (table 12) shows that the largest single
component (24.3%) is the uncertainty of the molar mass of
atmospheric argon. If techniques such as those used by
Valkiers et al [14, 15, 24] had been used, or if a comparison
of the molar masses against mono-isotopic 40Ar [13] had
been undertaken, this could have been reduced considerably.
In fact this measurement could still be made post hoc if
resources became available. It is difficult to see how the
temperature calibration uncertainties (11.2%) could be reduced
significantly, but the temperature gradient (7.4%) could have
been eliminated by more careful design. In the estimation
of the radius, it is difficult to see how uncertainties in
the waveguide correction (10.6%) could be easily reduced.
The uncertainty associated with possible dielectric layers
on the surface of the resonator (10.1%) could be further
investigated by use of ‘loop’ antennas to exploit TE as well
as TM modes.

Acknowledgments

This work was funded by the Pathfinder programme of the
UK’s Department for Business, Innovation and Skills and
by the iMERA and EMRP joint research programmes of
the European Union. The SUERC Noble Gas Laboratories

are supported by NERC Services and Facilities. Neil Downie
and Gordon Ferrier of Air Products assisted with multiple
measurements of BIP argon. The authors are grateful to
Gordon Edwards, Stephanie Bell, Martin Milton, Richard
Brown and Richard Rusby for discussions, and to colleagues
throughout NPL too numerous to mention individually. The
authors are also grateful to Roger Read and Alan Heaume of
Cranfield University for their work creating the inner surface
of the NPL–Cranfield quasispheres. In addition this work has
benefitted greatly from the kind cooperation of Laurent Pitre,
Roberto Gavioso and Eric May. The authors are grateful to
the referees whose comments have substantially improved the
manuscript.

References

[1] CIPM Recommendation 1 (CI-2005) Preparative steps towards
new definitions of the kilogram, the ampere, the kelvin and
the mole in terms of fundamental constants www.bipm.org/
cc/CIPM/Allowed/94/CIPM-Recom1CI-2005-EN.pdf

[2] Taylor B N and Thompson A 2008 The International System
of Units (SI) NIST Special Publication 330
http://physics.nist.gov/Pubs/SP330/sp330.pdf

[3] Mills I M, Mohr P J, Quinn T J, Taylor B N and Williams E R
2006 Redefinition of the kilogram, ampere, kelvin and
mole: a proposed approach to implementing CIPM
recommendation 1 (CI-2005) Metrologia 43 227

[4] Felmuth B, Gaiser Ch and Fischer J 2006 Determination of the
Boltzmann constant—status and prospects Meas. Sci.
Technol. 17 R145–59

[5] Mohr P J, Taylor B N and Newell D B 2012 CODATA 2010
recommended values of the fundamental physical constants
Rev. Mod. Phys. 84 1527–605

[6] Mehl J B 1985 Spherical acoustic resonator: effects of shell
motion J. Acoust. Soc. Am. 78 782–8

[7] Mehl J B, Moldover M R and Pitre L 2004 Designing
quasi-spherical resonators for acoustic thermometry
Metrologia 41 295–304

[8] Mehl J B 1985 Acoustic resonance frequencies of deformed
spherical resonators. II J. Acoust. Soc. Am. 79 278–85

[9] Mehl J B 1982 Acoustic resonance frequencies of deformed
spherical resonators J. Acoust. Soc. Am. 71 1109–13

[10] Mehl J B 2007 Acoustic eigenvalues of a quasispherical
resonator: second order shape perturbation theory
for arbitrary modes J. Res. Natl Inst. Stand. Technol.
112 163

[11] Underwood R, Flack D, Morantz P, Sutton G, Shore P and
de Podesta M 2011 Dimensional characterization of a
quasispherical resonator by microwave and coordinate
measurement techniques Metrologia 48 1

[12] Cheung B C and Lee W B 2002 Surface Generation in
Ultra-precision Diamond Turning (New York: Wiley)

[13] Moldover M R, Trusler J P M, Edwards T J, Mehl J B and
Davis R 1988 Measurement of the universal gas constant R
using a spherical acoustic resonator J. Res. Natl Bur. Stand.
93 85–144

[14] Pitre L, Sparasci F, Truong D, Guillou A, Risegari L and
Himbert M E 2011 Measurement of the Boltzmann constant
kB using a quasi-spherical acoustic resonator Int. J.
Thermophys. 32 1825–86

[15] Sutton G, Underwood R, Pitre L, de Podesta M and Valkiers S
2010 Acoustic resonator experiments at the triple-point of
water: first results for the Boltzmann constant and
remaining challenges Int. J. Thermophys. 31 1310

[16] de Podesta M, Sutton G, Underwood R, Morantz P,
Davidson S and Perkin M 2011 Assessment of uncertainty

Metrologia, 50 (2013) 354–376 375

http://www.bipm.org/cc/CIPM/Allowed/94/CIPM-Recom1CI-2005-EN.pdf
http://www.bipm.org/cc/CIPM/Allowed/94/CIPM-Recom1CI-2005-EN.pdf
http://physics.nist.gov/Pubs/SP330/sp330.pdf
http://dx.doi.org/10.1088/0026-1394/43/3/006
http://dx.doi.org/10.1088/0957-0233/17/10/R01
http://dx.doi.org/10.1103/RevModPhys.84.1527
http://dx.doi.org/10.1121/1.392448
http://dx.doi.org/10.1088/0026-1394/41/4/011
http://dx.doi.org/10.1121/1.393568
http://dx.doi.org/10.1121/1.387783
http://dx.doi.org/10.6028/jres.112.013
http://dx.doi.org/10.1088/0026-1394/48/1/001
http://dx.doi.org/10.6028/jres.093.010
http://dx.doi.org/10.1007/s10765-011-1023-x
http://dx.doi.org/10.1007/s10765-010-0722-z


M de Podesta et al

in the determination of the Boltzmann constant by an
acoustic technique Int. J. Thermophys. 32 413–26

[17] Mehl J B 2009 Second-order electromagnetic eigenfrequencies
of a triaxial ellipsoid Metrologia 46 554–9

[18] Edwards G and Underwood R 2011 The electromagnetic fields
of a triaxial ellipsoid calculated by modal superposition
Metrologia 48 114

[19] Underwood R, Davidson S, Perkin M, Morantz P,
Sutton G and de Podesta M 2012 Pyknometric volume
measurement of a quasispherical resonator Metrologia
49 245–56

[20] Lewis G and Fox P G 1978 The thickness of thin surface films
determined by photo-electron spectroscopy Corrosion Sci.
18 645–50

[21] de Podesta M, Underwood R, Sutton G, Morantz P and
Harris P 2013 Internal consistency in the determination of
the Boltzmann constant using a quasispherical resonator
Temperature: Its Measurement and Control in Science and
Industry vol 8 (New York: AIP)

[22] Underwood R J, Mehl J B, Pitre L, Edwards G, Sutton G and
de Podesta M 2010 Waveguide effects on quasispherical
microwave cavity resonators Meas. Sci. Technol.
21 075103

[23] Hurly J J and Mehl J B 2007 4He thermophysical properties:
new ab initio calculations J. Res. Natl. Inst. Stand. Technol.
112 75–94

[24] Valkiers S, Vendelbo D, Berglund M and de Podesta M 2010
Preparation of argon primary measurement standards for the
calibration of ion current ratios measured in argon Int. J.
Mass Spectrom. 291 41–7

[25] Mehl J B and Moldover M R 1986 Measurement of the ratio of
the speed of sound to the speed of light Phys. Rev. A
34 3341

[26] Mark D F, Barfod D N, Stuart F M and Imlach J G 2009 The
ARGUS multicollector noble gas mass spectrometer:
Performance for 40Ar/39Ar geochronology Geochem.
Geophys. Geosyst. 10 Q0AA02

[27] Mark D F, Stuart F M and de Podesta M 2011 New
high-precision measurements of the isotopic composition

of atmospheric argon Geochim. Cosmochim. Acta
75 7494–501

[28] Lee J Y, Marti K, Severinghaus K, Kawamura K, Yoo H S,
Lee J B and Kim J S 2006 A redetermination of the isotopic
abundances of atmospheric Ar Geochim. Cosmochim. Acta
70 4507–12

[29] de Podesta M, Sutton G, Underwood R, Bell S, Stevens M,
Byrne T and Josephs-Franks P 2011 Outgassing of water
vapour, and its significance in experiments to determine the
Boltzmann constant Metrologia 48 L1

[30] Final report on the CCT-K7 Comparison: http://kcdb.bipm.org/
AppendixB/appbresults/cct-k7/euromet.t-k7 final report.pdf

[31] Schmidt J W and Moldover M R 2003 Dielectric permittivity
of eight gases measured with cross capacitors Int. J.
Thermophys. 24 375–403

[32] Moldover M R, Mehl J B and Greenspan M J 1986 Gas-filled
spherical resonators: theory and experiment J. Acoust. Soc.
Am. 79 253–72

[33] Ewing M B and Goodwin A R H 1992 An apparatus based on
a spherical resonator for measuring the speed of sound in
gases at high pressures. Results for argon at temperatures
between 255 K and 300 K and at pressures up to 7 MPa
J. Chem. Thermodyn. 24 531–47

[34] Estrada-Alexanders A F and Trusler J P M 1995 The speed of
sound in gaseous argon at temperatures between 110 K and
450 K and at pressures up to 19 MPa J. Chem. Thermodyn.
27 1075–89

[35] Pitre L, Moldover M R and Tew W L 2006 Acoustic
thermometry: new results from 273 K to 77 K and progress
towards 4 K Metrologia 43 142–62

[36] May E F, Berg R F and Moldover M R 2007 Reference
viscosities of H2, CH4, Ar, and Xe at low densities Int. J.
Thermophys. 28 1085–110

[37] Vogel E 2010 Reference viscosity of argon at low density in
the temperature range from 290 K to 680 K Int. J.
Thermophys. 31 447–61

[38] Gillis K A 2012 Second-order boundary corrections to the
radial acoustic eigenvalues for a spherical cavity Metrologia
49 L21

376 Metrologia, 50 (2013) 354–376

http://dx.doi.org/10.1007/s10765-010-0897-3
http://dx.doi.org/10.1088/0026-1394/46/5/020
http://dx.doi.org/10.1088/0026-1394/48/3/005
http://dx.doi.org/10.1088/0026-1394/49/3/245
http://dx.doi.org/10.1016/0010-938X(78)90057-4
http://dx.doi.org/10.1088/0957-0233/21/7/075103
http://dx.doi.org/10.6028/jres.112.006
http://dx.doi.org/10.1016/j.ijms.2010.01.004
http://dx.doi.org/10.1103/PhysRevA.34.3341
http://dx.doi.org/10.1029/2009GC002643
http://dx.doi.org/10.1016/j.gca.2011.09.042
http://dx.doi.org/10.1016/j.gca.2006.06.1563
http://dx.doi.org/10.1088/0026-1394/48/1/L01
http://kcdb.bipm.org/AppendixB/appbresults/cct-k7/euromet.t-k7_final_report.pdf
http://kcdb.bipm.org/AppendixB/appbresults/cct-k7/euromet.t-k7_final_report.pdf
http://dx.doi.org/10.1023/A:1022963720063
http://dx.doi.org/10.1121/1.393566
http://dx.doi.org/10.1016/S0021-9614(05)80123-5
http://dx.doi.org/10.1006/jcht.1995.0113
http://dx.doi.org/10.1088/0026-1394/43/1/020
http://dx.doi.org/10.1007/s10765-007-0198-7
http://dx.doi.org/10.1007/s10765-010-0760-6
http://dx.doi.org/10.1088/0026-1394/49/6/L21

	1. Introduction
	1.1. Introduction
	1.2. Experimental details

	2. Results
	2.1. Molar mass
	2.2. Temperature
	2.3. Equivalent radius
	2.4. Speed of sound
	2.5. Boltzmann constant
	2.6. Uncertainty table

	3. Discussion
	3.1. Comparison with previous work
	3.2. Summary

	 Acknowledgments
	 References

